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ABSTRACT 

 
The Standard Platinum Resistance Thermometer, acronym SPRT, is the stipulated 
interpolation instrument for realizing the International Temperature Scale of 1990 
between the defining fixed points, over the range from 13.8 K (the triple point of eka-
hydrogen) to 961.78 °C, the freezing point of silver. However it must be said 
immediately that no single thermometer or design of thermometer can be expected to 
cover this entire 1221 K span, but that it can be covered by three designs of 
thermometer, with substantial overlap of range. The three designs are the long-stem 
SPRT, the cryogenic or capsule SPRT and the high-temperature SPRT or HTSPRT. 
 
1: THE LONG-STEM SPRT AND ITS USEFUL RANGE 
 
The long-stem SPRT is the most commonly encountered of the types, and is the 
accepted interpolating standard over that portion of the temperature range from -
189.352 °'C (the triple point of argon) to the freezing point of zinc (+419.527°C). 
 
The principle reason for limiting the range at the cold end is that the thermometer 
tube, which extends from the thermal environment into ambient, can conduct 
unwanted heat into a cryogenic situation. There is usually no difficulty about using this 
thermometer down to -200 °C. 
 
The upper limit of +420 ° C is a convention only. Certain such thermometers (those 
with quartz sheaths and high-temperature mica insulation) can be used, with proper 
precautions, to 630 °C; others (with Pyrex sheaths) can be used safely below 500 °C. 
630.74 °C, the freezing point of antimony, was a secondary fixed point of the 
International Practical Temperature Scale of 1968, which the ITS-90 replaces, and 
was considered to be the upper end of the platinum thermometer range on that Scale. 
The antimony point, which was not very satisfactory to realize, has been replaced by 
the freezing point of aluminum, 660.323 °C, and this must be considered beyond the 
safe upper limit for any mica-insulated SPRT.  
 
On IPTS-68, it was customary to issue a calibration table for SPRTs with an upper limit of 
either 500 °C or 630 °C, as the construction of the thermometer permitted and the 
customer requested. The calibration points were the water triple point and the freezing 
points of tin and zinc, and the propagation of a 1 mK error at tin and zinc could produce an 
uncertainty of about 8 mK at 630 °C. 
 
On ITS-90, there are a number of specified ranges above 0 °C. These include the range 
0.01° to 419.527 °C (the freezing point of zinc) and 0.01 °C to 660.323 °C (the freezing 
point of aluminum). Current NIST policy on calibration ranges is as follows: 
 

"I f  a customer requests that his SPRT be calibrated through the zinc point and that 
we provide tables with extrapolation to 500 °C, we will honor that request, with a 
warning that the uncertainty is unknown above 420 °C. We will not extrapolate to 
630 °C. 



 
If we get a request to calibrate an 8163 or 8167 type SPRT to the aluminum point, 
we call the customer and advise him that the SPRT should not be calibrated at that 
temperature, and that if it is, it may be destroyed in calibration. I f  he, nevertheless, 
insists upon such a calibration, we will provide it, reluctantly."(1)

 
The platinum resistance thermometer has a long and honorable history. It was proposed first 
by Siemens in a Bakerian Lecture in 1871. Siemens' thermometer consisted of a fine 
platinum wire wound on a fire-clay cylinder, which was then enclosed in a protective iron 
tube. The thermometer gained rapid acceptance, due principally to the reputation of its 
creator, and was abandoned almost as quickly when it was discovered to be unstable (due 
most likely to contamination).(2) Also, at the cost (then) of refined platinum and good 
porcelain, it was too expensive for industrial use. 
 
Callender, less than twenty years later, revived the platinum thermometer for laboratory 
work. Instead of a mandrel of fire clay or porcelain, he wound the platinum element on 
mica. He realized also that any necessary joints must be autogenously welded, since the 
migration of components of solders would contaminate the pure platinum. The first 
documented statement of an interpolation algorithm for platinum, the Callender equation 
(later modified by van Dusen to include temperatures below 0 °C) is given in the epochal 
Callender paper, "On the practical measurement of temperature" read to the Royal Society 
in 1886.(3) The elements of today's thermometer are all here, waiting only refinement and 
reduction to practice. Among the numerous refiners, Griffiths, Holborn and Wien, Barber, 
one worker whose name stands out is C. H. Meyers, and a seminal paper of his is 
reproduced elsewhere in this issue of the Isotech Journal.(4) 
 
 
2: THE 25 OHM LONG-STEM THERMOMETER FOR -200 ° TO ABOUT 600 °C 
CONSTRUCTION OF THE THERMOMETER ELEMENT 
 
I have elected to begin discussion of construction with this type, because it includes the basic 
principles, and the other two are variants on it. 
 
The thermometer element is considered to be that length of platinum wire which is active in 
the measuring circuit and the structure which supports it. In standards use, the element is 
always connected as a 4-wire resistor, so that the long lead wires which extend up the 
thermometer tube, and the cable from the thermometer head to the resistance-measuring 
instrument, do not enter into the resistance determination. 
 
In the traditional constructions, the former or mandrel upon which the platinum wire is wound 
is a cross made of thin sheet mica. The four edges of the mica are cut with fine teeth or 
grooves to contain the wire, which is on the order of 0.1 mm (0.004 inch) in diameter. The 
grooves form a double helix, so that one half of the platinum wire is wound toward the 
outboard end of the element, leaving each intermediate groove empty, and the remaining 
wire is wound back into these grooves. The result is a bifilar winding which is approximately 
non-inductive (but which may have capacitive reactance). Fig. 1 shows, sketchily, such an 
element. The resistance is commonly about 25.5 Ω at 0°C. (This seemingly odd value was 
chosen to allow crude estimation; for a 25.5 Ω thermometer, at moderate temperatures, 0.1 
Ω represents approximately 1.0°C.) 
 

 
 
 



 
 
 
The mica former limits the upper temperature at which the thermometer may be used. Mica 
is a natural material; any of several silicates, including muscovite (ruby mica) and phlogopite 
(amber mica). Both forms are bound with water, and will deteriorate and flake at 
temperatures which drive off the water. Phlogopitic mica is used in the later quartz-tubed 
designs, and is limited to below 600°C for frequent use. The older designs using Pyrex tubes 
and ruby mica are limited to 500°C. 
 
The wire is the purest platinum obtainable. It is referred to as "reference grade", taking the 
name from its acceptability as the reference leg of a standard platinum-platinum/rhodium 
thermocouple. Refiners of platinum, of whom only one or two produce thermometer-grade 
metal, occasionally make a bar of platinum which is recognized as superior, and 
thermometer makers reserve long-term supplies from that specific bar. 
 
3: OTHER DETAILS OF CONSTRUCTION 
 
The four lead wires which proceed up the thermometer stem (tube, sheath) and into the 
head, or handle, are generally 0.4 mm (.015 in) diameter. They are ordered, spaced and kept 
from touching each other by some sort of insulating device; a common plan is to use a 
number of four-hole mica washers, often separated by spacers of quartz tubing. Early 
thermometers were made with gold leads, perhaps as a matter of cost of material (or see the 
Meyers paper in this issue of the Journal). This had the disadvantage of placing the platinum-
to-gold junctions at the hot end of the thermometer, where thermoelectric effects could occur. 
Most thermometers are now made with lead wires of commercial grade (or better) platinum 
extending into the cool thermometer head, where they are attached to the copper leads of 
the external cable, with great attention paid to isothermality by appropriate heat-sinking. 
 
At the cool end of the thermometer tube (which in today's thermometers is always quartz) the 
lead wires are hermetically sealed into the tube. In early thermometers this was done by 
sealing the platinum directly through the glass, or by Housekeeper seals. Both such seals 
effectively prevent repairs of broken tubes except by the most heroic means. For a number of 
years, it has been customary to close the cool end of the tube with a glass-to-metal header 
including four Kovar tubes, into which the lead wires are sealed by hydrogen brazing. The 
glass seal includes a fifth tube which is used to evacuate the tube assembly, perform 
occasionally arcane and sometimes mystical cleaning processes, to finally fill the tube with a 
gas, and to seal off. The gas in a long-stem thermometer of this range is commonly 90% dry 



argon, 10% oxygen, at a pressure which will be equivalent to 1 atmosphere at the hot end of 
the thermometer's range. 
 
The quartz tubes of most thermometers are clear at the hot end for the length of the 
element, and for the rest of their length are roughened by sand-blasting, or coated with a 
black material such as Aquadag. Quartz has marvellous optical properties, and it is 
necessary to avoid piping heat out of (or into) the the sensitive element by breaking up 
internal reflections of radiant energy within the walls of the quartz tube. (For fun, try pointing 
one end of a quartz tube at a wall while heating the other end luminously hot. The circle of 
light projected onto the wall drives the lesson home). 
 
The four wires in the external cable are required to (a) be flexible and (b) represent constant 
resistances under such conditions as flexing. While the lead wires and the cable are not 
measured during a four-wire measurement, any wire not constant in resistance might change 
and cause errors during a measurement, say with a Mueller bridge, which requires several 
steps; or with a modern automatic bridge could be a source of noise. Requirement (a) could 
be met with stranded wire, but the strands of a stranded cable touch each other in random 
and inconstant parallel connections, which contradicts requirement (b). The wire commonly 
used is Litz wire (Litzendraht), in which the individual strands are enamel-insulated from each 
other except at the ends where they are soldered to the platinum lead wires or to terminal 
lugs. The solders used should be thermal-free. The four Litz wires are made into a cable by 
some sort of woven serving. Terminal lugs are advisedly gold-plated copper, appropriately 
labeled as current or potential leads. 
 
4: VARIATIONS ON THE ABOVE 
 
Virtually all thermometer designs agree with the description given above, but there are a 
number of different ways of arranging the platinum wire relative to its supporting structure. 
 
It is essential that the wire, whose resistance versus temperature characteristic is the 
essence of the measurement, be and be maintained in a fully annealed and strain-free 
condition. Strained or work-hardened platinum can will be higher in resistance and lower in 
sensitivity than it is in the fully annealed condition. Meyer's mica cross attempted to speak to 
this by providing essentially point contacts between platinum and the supporting structure, 
and leaving it freely suspended elsewhere. Fig. 1 shows a design in which the platinum is 
first coiled into a helix (with a pitch diameter of about 0.4 mm (.0125 in) and then wound on 
the mica. There are about 30 turns; thus there are about 120 places at which platinum 
touches mica. Fig. 2 shows a later Meyers design in which the platinum is not coiled, but is 
wound straight on the cross, for about 120 turns, or about 480 points of contact. 
 
 
The first Meyers design coils the wire to allow more ohms in the linear length. The second 
design is an attempt to place more of the wire nearer the inside diameter of the quartz, to 
reduce thermal losses and thermal lag, and to improve dissipation of I2R heat. Whether one 
prefers Fig. 1 or Fig. 2 is a highly personal matter. My preference is for the coiled-coil design 
of Fig. 1. I have never found the self-heat or lag to be a nuisance, and I feel that Fig. 1, in 
which the platinum enjoys an additional degree of freedom, is marginally more stable. 
 
Fig. 3 is a design by Barber, of NPL, in which the coil of platinum wire is allowed to hang 
freely in a U-shaped quartz capillary inside the main thermometer tube. Other designs, such 
as that of Curtis at Rosemount Engineering, dispose a coil of platinum inside a number of 
axial holes in ceramic, or on two sides of a helically-twisted ribbon of quartz which serves to 
separate the two coils. My experience suggests that all of these designs are marginally 
inferior to Meyers', in the amount of space which is left between the quartz tube and the 
sensing wire, and the consequent thermal loss and response lag; and the larger distance 
from the platinum to the quartz makes self-heating effects worse to much worse. 



 
5: THE CRYOGENIC, OR CAPSULE, THERMOMETER 
 
The cryogenic, or capsule thermometer, is short (usually less than 50 mm (2 in) long. The 
point is that does not have a stem which must emerge from the thermal zone into ambient, 
and does not serve as a conductor of unwanted heat into a zone one is trying to keep very 
cold. It is often built into equipment in a semi-permanent fashion. Its lead wires are also 
short, and usually are welded to thin copper or Constantan extensions, which are carefully 
thermally tied to cold parts of the apparatus. The element designs are similar to those for 
long-stem thermometers. The tube or sheath is usually not quartz but commercial grade 
platinum. The gas used to fill is usually helium with a fraction of oxygen, to facilitate thermal 
transfer at temperatures where the conductance of helium is superior to that of any other 
gas. 
 
While intended for use at low temperatures, the capsule thermometer range extends from 
13.8 K to as high as 250 °C, and it is used not only in cryogenics but also in equipment, such 
as calorimeters, where it is desirable to build in a short sensor semi-permanently. 
 
6: THE HIGH-TEMPERATURE PLATINUM RESISTANCE THERMOMETER 
 
The extension, in ITS-90, of the platinum range to the freezing point of silver (961.93 °C) has 
required the development of a new platinum resistance thermometer; acronym HTSPRT. 
 
 
The first problem of extending the range is insulation. Mica cannot tolerate the temperatures. 
It has been necessary to make the former on which the platinum is wound of high-purity 
quartz. Even quartz does not provide absolute isolation at the high temperature end of the 
range (I have tried monocrystalline sapphire, at much greater cost than quartz, and it is about 
twice as good, which is not good enough). The former, or mandrel, is thus a shunt resistance 
across the platinum winding, and because of the uncertainty of the contacts between 
platinum and quartz, it is uncertain and unstable in magnitude. The practicable solution is to 
reduce the element resistance so that the shunt resistance produces a smaller network 
effect. For example, for a 25.5 Ω thermometer, suppose that the shunt resistance were 20 
MQ. Then the network resistance is 25.499967 Ω. But we require measurement assurance of 
better than 1 part per million, so this won't do, even if the shunt were a constant (calibratable) 
value, which it is not. For a 0.25 Ω thermometer, a 20 M Ω shunt gives a network resistance 
of 0.24999997 Ω, which is tolerable. The cost, and there is a cost, is increased difficulty on 
the electrical measurement side, particularly in the face of noise, which is present at high 
temperatures. 
 
Another benefit accrues from a lower resistance. Platinum wire tends to show crystal growth 
above approximately °C. The inevitable result is a crystallization so profound that, in fine 
wire, fractures at the grain boundaries develop. The 0.25 Ω choice allows the use of much 
heavier platinum wire for the element, which prolongs life and minimizes drift. Indeed, Evans 
developed a 0.25 Ω high temperature thermometer, called the "birdcage", which employed 
platinum rods instead of wire and which was produced commercially, but years ahead of a 
scale to use it. In more conventional designs, the heavy wire allows the support to be a blade 
rather than a cross, reducing the number of quartz-to-platinum contacts by 1/2. Tavener has 
described such a thermometer in an earlier issue of this Journal(5) and the detail of its 
element and lead arrangement is shown in Fig. 4. It is in current production, and has been 
shown by calibrations in several National Laboratories to be extremely stable. 
 
 



 
 
(Isotech and I are studying the design of a thermometer, the top of whose range will be the 
aluminum point, the former of quartz, and the 0 °C value 10 Ω. For the user who does not 
require temperatures higher than 660°C, the higher resistance will be attractive). 
 
Another problem which can occur at the higher temperatures, and which is subtle, is the 
migration of metal ions from the immediate environment, through the quartz (which is 
transparent to such ions as copper, iron, nickel and chromium at these temperatures) into the 
platinum, resulting in degradation of its purity and large consequent calibration shifts. The 
Inconel liner of a furnace will cause such an effect, if the thermometer is not isolated from it 
by, say, a thin sleeve of graphite. (The graphite crucible and sleeve of the Isotech fixed-point 
cells are sufficient protection). Isotech also furnishes a patented, battery-powered field 
generator which, when used with its Model 962 thermometers, will shield the thermometer 
against contaminating metal ions. 
 
7: USING SPRTs: MECHANICAL 
 
It has been said that, if one puts an SPRT down onto a workbench hard enough to hear it 
touch, it will probably be strained. Mechanical strain of the wires, due to shock or 
acceleration between their points of support, will shift a thermometer throughout its range, 
increasing W values below 0 °C and decreasing them above 0 °C, because the 0 °C value 
which is the W divisor has increased. The same effect can be caused by using the 
thermometer in an environment which imparts continuing vibration to it. Attention must be 
given to such factors during storage, as well. 
 
When a thermometer is sent elsewhere for calibration, it has been my preference to carry it 
by hand, and to retrieve it the same way. If a thermometer must be shipped, it should be 
packed adequately in a rigid box, in turn contained in a box full of resilient material, and the 
box closed by some means which is not in itself shocking; e.g., a wooden crate closed by 
woodscrews, not by nails. 
 
8: USING SPRTs: QUALITY ASSURANCE 
 
Any thermometry laboratory should be prepared to realize the triple point of water, for at least 
the following reasons: 
 
a) The ratio W of the resistance at temperature to the resistance at the triple point of water: 
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is more stable and repeatable than the resistance. The calibration received from a calibration 
laboratory is given in terms of W vs. t, not R vs. t. To realize a temperature measurement 
accurately, the measurement of resistance at temperature must be followed by a 
measurement of resistance at the water triple point, and the W value calculated, so that the 
tables may be used. 



Furthermore, Berry has shown that as platinum is heated, several surface oxidation states 
are produced sequentially, which alter the resistance. However a measurement at a 
temperature and a measurement immediately following, at the water triple point, report the 
platinum in the same state. (The original state may be restored by an anneal, as described in 
c) below). 
 
(NOTE: In previous scales, the denominator for W was the resistance at 0 °C. In the ITS-90, 
it is the resistance at 0.01 °C) 
 
The resistance at the water triple point is a good indication of the state of the thermometer 
with respect to change. Quality control requires that, each time the thermometer is used, the 
resistance at the water triple point be placed on a control chart. The history thus developed 
aids confidence immeasurably. I am not a believer in fixed calibration intervals for SPRTs. I 
am a believer in following the control chart, which will tell me whether and when the 
thermometer has shifted too much. Against risks in transportation, and compared to the 
present cost of a National Laboratory calibration, a water triple point system may pay for 
itself in one interval. 
 
When the thermometer is returned after calibration, a check at the water triple point will 
indicate whether or not there has been a subsequent shift due to transportation, and whether 
one may use the calibration with confidence. 
 
For those laboratories which are equipped to do their fixed-point calibrations in house (a 
rapidly increasing number) it is wise, before calibrating, to perform a measurement at the 
water triple point, then anneal for 4 hours at 450 'C, and measure at the water triple point 
again. Any measurable change will indicate that the thermometer is either unstable or not 
fully annealed. In the latter case, repeating the process until a constant value is obtained can 
save much calibration time and expense. (Recommendations for handling HTSPRTs during 
and after exposure to high temperatures, and annealing such thermometers, should be 
sought from the manufacturer). 
 
9: USING SPRTs: SELF-HEATING EFFECTS 
 
A resistance is passive; to measure it requires that a current be passed through it, and the 
inevitable effect is I2R heating. It is typical practice in calibration laboratories to calibrate a 
25.5 Ω thermometer with 1 mA applied, and a 0.25 Ω thermometer with 10 mA. (It is never 
wise to apply more than 5 times these current levels, even momentarily). These calibration 
currents will result in a slightly elevated temperature. It is the First Law of Thermometry that a 
thermometer measures no temperature other than its own. In the designs of Fig. 1 and Fig. 
2, the elevation, at the water triple point temperature, may be as much as 0.5 mK; with 
designs of less favorable heat transfer it may be substantially higher. 
 
More accuracy may be achieved, at more effort, by reducing the reading to the resistance 
which would be obtained if there were no source of power. This can be done by measuring 
the resistance at two currents, for example x 1 and x 2  the accustomed level, in the 
identical environment. Converted to terms of power, the zero power resistance can be 
extrapolated. 
 
The heat generated by the thermometer is, of course, transferred to the medium in which it is 
immersed. The self-heat so dissipated in a large volume of flowing liquid is then less than 
that in a suffocating environment. In most circumstances, the heat generated will not be such 
as to consequentially raise the temperature of the environment. 
 
10: USING SPRTs: INTERPOLATION CALCULATIONS 
 
The mathematics of the ITS-90 has been treated elsewhere, and need not be repeated. 



References 6, 7, 8, 9, 10 and 11 contain complete details. Reference 9 provides valuable 
advice for those who specify and order calibration services. For laboratories equipped to 
calibrate at fixed points, Isotech has available Daedalus 1.1, an MS-DOS interpolation 
program covering the full SPRT ranges. For information, consult Isothermal Technology Ltd., 
Pine Grove, Southport, England, or Isothermal (USA) Ltd, 250 West 57 Street, New York 
N.Y. 10107. 
 
11: USING HIGH TEMPERATURE SPRTs 
 
Quartz, as used in high-temperature thermometer sheaths, is a non-crystalline form of a 
material which may lapse into the crystalline form at temperatures within the upper range of 
HTSPRTs. This will occur inevitably if the thermometer sheath is exposed without being 
scrupulously cleaned of any contaminants; dust, oil, fingerprints. Manufacturers will advise 
methods of cleaning. The effect of devitrification is to make the quartz leaky to gasses, 
including its own internal gas, and ultimately to destroy its mechanical strength and integrity. 
For the calibration points below aluminum, HTSPRTs may be handled in the same way as 
the 25.5 Ω conventional thermometers. That is, the thermometers are preheated to avoid 
sudden cooling of the fixed-point cell when they are inserted, and to prevent excess shock to 
the thermometer. 
 
At the higher calibration points (aluminum and silver), and in measurement situations at 
higher temperatures, special precautions are necessary, in inserting and also in removing the 
thermometer, to prevent excessive shifts. When used above 500 °C, it is advisable to raise 
the temperature of the environment containing the thermometer at a rate which achieves the 
desired temperature in 2 hours or more. This can be accomplished in either of two ways; at 
the beginning of the cycle, by placing the thermometer in a furnace which is below 500 °C 
and ramping the temperature gradually, or by preheating the thermometer in a second 
furnace on a similar time program. After the measurements are made, the thermometer 
should be allowed to cool in the furnace at a rate not exceeding a drop to 480 °C in 2 hours. 
At 480 °C the thermometer may be withdrawn safely. 
It is usually necessary, during calibration, to withdraw the thermometer from the cell, so that 
the inner mantle can be formed in the cell using quartz rods. This is best done by raising the 
thermometer so that its tip is located a few centimeters above the graphite lid of the cell, 
waiting 5 minutes or so, raising the thermometer another 5 cm, waiting another 5 minutes, 
etc., until the thermometer is free from the cell guide tube. The thermometer may be 
transferred to another furnace at the appropriate temperature. When the thermometer is re-
inserted into the cell, the procedure is followed in reverse, until the thermometer is bottomed 
in the cell. 
 
The shifts which may be observed when a thermometer is cooled too rapidly are due to 
quenched-in crystal lattice vacancies. These can usually be removed, and the thermometer 
restored, by heating the thermometer, with the rise time precautions given above, to 960 °C, 
and holding it there for 30 to 60 minutes; then gradually cooling to below 500 °C before 
withdrawing the thermometer. A check at the water triple point will indicate whether the 
treatment has been adequate, or whether it needs to be repeated. 
 
 
 
In Part IV of this ongoing series, we will consider resistance-measuring equipment for 
standard platinum resistance thermometry, and industrial platinum sensors. 
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